Collectively coincidence-type results and applications

نویسندگان

چکیده

Based on the well-known Brouwder fixed-point theorem in this paper we will present a variety of collectively coincidence-type results for general classes maps. Our theory automatically generate analytic alternatives and minimax inequalities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coincidence point and common fixed point results via scalarization function

The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for three self mappings in $b$-metric spaces. Next, we obtain cone $b$-metric version of these results by using a scalarization function. Our results extend and generalize several well known comparable results in the existing literature.

متن کامل

Some extended Simpson-type inequalities and applications

‎In this paper‎, ‎we shall establish some extended Simpson-type inequalities‎ ‎for differentiable convex functions and differentiable concave functions‎ ‎which are connected with Hermite-Hadamard inequality‎. ‎Some error estimates‎ ‎for the midpoint‎, ‎trapezoidal and Simpson formula are also given‎.

متن کامل

Coupled coincidence point results for mixed (G,S)-monotone mapping and applications

We introduce the concept of mixed (G,S)-monotone mappings and prove coupled coincidence point theorems for such mappings satisfying a nonlinear contraction involving altering distance functions. Presented theorems extend, improve and generalize the recent results of Harjani, López and Sadarangani [J. Harjani, B. López and K. Sadarangani, Fixed point theorems for mixed monotone operators and app...

متن کامل

coincidence point and common fixed point results via scalarization function

the main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for three self mappings in $b$-metric spaces. next, we obtain cone $b$-metric version of these results by using a scalarization function. our results extend and generalize several well known comparable results in the existing literature.

متن کامل

A Lefschetz-type Coincidence Theorem

A Lefschetz-type coincidence theorem for two maps f, g : X → Y from an arbitrary topological space to a manifold is given: Ifg = λfg, that is, the coincidence index is equal to the Lefschetz number. It follows that if λfg 6= 0 then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2021

ISSN: ['1026-7360', '1563-504X', '0003-6811']

DOI: https://doi.org/10.1080/00036811.2021.1965588